Ontologies in QM
View the Project on GitHub vgurianov/qm
Let \(\hat {L}\) and \(\hat {M}\) be self-adjoint operators and their commutator \([{\hat {L}},{\hat {M}}]={\hat {L}}{\hat {M}}-{\hat {M}}{\hat {L}}\) be non-zero. Denote by \(\mid l_i\rangle\) and \(\mid m_j\rangle\), \(i,j=1,2\) the eigenfunctions of these operators.
Let wave function \(\mid a\rangle\) be determined in \(l\)-basis
\begin{equation}
|a\rangle = a_1|l_1\rangle + a_2|l_2\rangle
= \langle l_1|a\rangle |l_1\rangle + \langle l_2|a\rangle |l_2\rangle
\end{equation}
Both \(m\)- and \(l\)-basis can be transform into each other.
\begin{eqnarray}
\mid l_1\rangle = \langle m_1 \mid l_1\rangle \mid m_1\rangle + \langle m_2 \mid l_1\rangle \mid m_2\rangle \nonumber
\mid l_2\rangle = \langle m_1\mid l_2\rangle \mid m_1\rangle + \langle m_2\mid l_2\rangle \mid m_2\rangle
\end{eqnarray}
Now we can to transform \(\mid a \rangle\) wave function to \(m\)-basis.
\begin{multline}
|a\rangle = a_1 |l_1\rangle + a_2 |l_2\rangle = \nonumber
= a_1 (\langle m_1 \mid l_1\rangle \mid m_1\rangle + \langle m_2 \mid l_1\rangle \mid m_2\rangle ) +
a_2 ( \langle m_1\mid l_2\rangle \mid m_1\rangle + \langle m_2\mid l_2\rangle \mid m_2\rangle ) = \nonumber
= (a_1 \langle m_1 \mid l_1\rangle + a_2 \langle m_1\mid l_2\rangle)\mid m_1\rangle +
(a_1 \langle m_2 \mid l_1\rangle + a_2 \langle m_2\mid l_2\rangle)\mid m_2\rangle = \nonumber
= b_1 \mid m_1\rangle + b_2 \mid m_2\rangle ,
\end{multline}
where
\begin{eqnarray}
b_1 = a_1 \langle m_1 \mid l_1\rangle + a_2 \langle m_1\mid l_2\rangle \nonumber \
b_2 = a_1 \langle m_2 \mid l_1\rangle + a_2 \langle m_2\mid l_2\rangle
\end{eqnarray}
i.e. \(b = Ua\), where \(U\) is a unitary operator and \(a^+=(a_1,a_2)\), \(b^+=(b_1,b_2)\). A unitary operator satisfies \(U^*U = UU^* = I\), where \(U^*\) is the adjoint of \(U\), and \(I\) is the identity operator. Suppose that the unitary operator has form
\(U =
\begin{pmatrix}
1/\sqrt{2} & 1/{\sqrt{2}} \\
-1/\sqrt{2} & 1/\sqrt{2}
\end{pmatrix}\)
then we get uncertainty principle.
Let be \(a_1 = 1, a_2 = 0\). From (7) we get \(b_1 = 1/\sqrt{2}\) and \(b_2=1/\sqrt{2}\). Let be \(a_1 = 1/\sqrt{2}, a_2 = 1/\sqrt{2}\) then we get \(b_1 = 1\) and \(b_2=0\).
As we can see, if the measurement of one quantity is accurate, then the other quantity is completely uncertain.
Wave function as a semantic net is depicted in the picture
Fig.4. The uncertainty principle wave function
The name conflict (l and m) is resolved twice. First in the constructor of classes U and V, then in the constructor of the MIX class.
Experiment result is depicted in table
№ | \(\mid m_1\rangle\) | \(\mid m_2\rangle\) | \(\mid l_1\rangle\) | \(\mid l_2\rangle\) |
---|---|---|---|---|
1 | 1.0 | 0.0 | 0.497 | 0.503 |
2 | 0.499 | 0.501 | 1.0 | 0.0 |
The complete code is here https://github.com/vgurianov/qm/software/uncertainty.py.